In 2020, the global drone sensors Market was valued at $394.7 million. The COVID-19 pandemic had a significant negative impact on the demand for these sensors worldwide. Despite this, our analysis shows that the market grew by 20.25% in 2020, which is higher than the average annual growth rate seen from 2017 to 2020. Looking ahead, the market is expected to expand from $394.7 million in 2020 to $2,342.1 million by 2028, with an annual growth rate of 25.08% from 2021 to 2028.
Informational Source:
https://www.fortunebusinessinsights.com/drone-sensor-market-102596
Drone technology has advanced rapidly in recent years, enabling a wide range of new applications in fields such as aerial photography, surveying, search and rescue, agricultural monitoring, and more. A key driver of these advancements has been the continual improvement and miniaturization of the sensors that equip modern drones.
In this report, we'll explore some of the latest and most innovative sensor technologies being integrated into commercial and enterprise-grade drone platforms as of August 2023.
One of the most important capabilities for many drone applications is high-quality imaging. Advancements in image sensor technology have enabled drones to capture increasingly detailed aerial photographs and video footage.
The megapixel count of drone cameras has continued to rise, with 48MP and even 64MP sensors now commonplace on higher-end models. This allows for extremely detailed, large-format images to be captured from the air. The latest 64MP drone cameras can produce individual photos over 9,000 pixels wide, enabling the capture of intricate details and textures from altitude.
In addition to high megapixel counts, drone cameras are also featuring larger image sensor sizes, typically 1-inch or even medium format. Larger sensors allow for better low-light performance, shallower depth of field, and overall higher image quality compared to the smaller sensors found in entry-level and mid-range drones.
Some new drone models are equipped with multi-lens camera systems, similar to the setups found in many modern smartphones. These utilize several image sensors with different focal lengths to capture a wider field of view or enable advanced computational photography techniques like digital zoom, background blur, and high-dynamic range imaging.
Thermal cameras are becoming an increasingly common payload for drones, particularly in applications like search and rescue, building inspections, and wildlife monitoring. These sensors detect infrared radiation to create images that visualize heat signatures rather than visible light. This allows drones to "see" in darkness or other low-visibility conditions.
Light detection and ranging (LiDAR) is another important sensor technology being integrated into drones. LiDAR systems use laser pulses to accurately measure distances and create highly detailed 3D maps of a drone's surroundings.